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The inductance per unit length is given by

L=:

where

a= JBrIA (Gaussian Law)
A

and

1 = M H. ds (Ampere’s Law).

(8)

(9)

(lo)

Consider now a closed loop of a typical
line of magnetic field around the center con-
ductor of a slab line (Fig. 2). If such a loop
is approximated by a rectangular one of
about the same length, 2 W+2T+4y, the
magnetic field intensity Hat distance y from
the center conductor can be calculated from
(10) and is found to be

H=
I

2W+22’+4y”
(11)

Substituting for the magnetic flux density,
B( = ~H) in (9), changing the variable of
integration from A to ,V with dA = ldv, putting
in appropriate limits of integration and re-
arranging terms,

@
f

(D–T) /2

=L=
.udy

F 2W+2T+4y
(12)

o

from which it readily follows that

L‘N%%] ’13)
Substituting for L in (7), putting in the

values for co’ and ~, (6) is obtained.
A graphical comparison of (5) and (6) is

shown in Fig. 3 where the fractional error in
characteristic impedance is plotted as a func-
tion of W/D for T/D =0.1. For W/D< 1.0
the error in calculating Zo using (6) becomes
increasingly greater than 1 percent. How-
ever, its range of application can be extended
by considering a longer line of magnetic
field, of length 2KW+2T+4y, where K> 1
and is a function of W/D. Equation (6)

modifies to

‘0‘% (%x) ’14)
By using (5) and (14), values of K as a

function of W/D have been found and plotted
graphically (Fig. 4), which allow (14) to be
used to determine ZO to within 0.7 percent of
Cohn’s value, for W/D ~0.30, and T/D
~0.10. For T/D< 0.20, Zo can be determined
to within about 5 percent using (14) for
W/D> O.30.

Finally, for the special case of zero strip
thickness (T/D = O), (5) simplifies to the well-
known expression

9-Ll.5/d;
z, =

[;+%1“ ’15)
Similarly, (6) reduces to

Z’=%[’+;] ‘1’)
which is accurate to within almost 1 percent
of (15) for W/D> O.75.
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An Improved Method for Measuring

Scattering Parameters of Non-

reciprocal Two-Ports

Usual methods for measuring the char-
acteristic parameters of reciprocal structures
fail when applied to nonreciprocal structures.
Methods which rest on the use of the input
impedance formula

~ = (21,222 - 2,,2,,)+ 2,,2..,
,r.

222 + Zo.i

or, of the input reflection coefficient relation-
ship

&2s21
h-,. = S,, –

/S2, – &
0“

allow determination of the products ZMZ21 or
S&U, but are unable to separate the indi-
vidual factors. Another difficulty arises when
one considers that practical magnitudes of
the scattering parameters often lie very close
to zero or unity (e.g., for isolators or for
phase shifters). The method which we pro-
pose allows accurate determination of both
magnitude and phase of thes tattering param-
eters. The procedure gives good results for
arbitrary values of the parameters, and is an
extension of a procedure suggested by McP-
herson [1] and Pippin [21, and adapted by
Altschuler [3].

Consider a nonreciprocal two-port with
reference planes 1 and 2 (Fig. 1), Then,

bl = Sllal + S1~aQ (1)

bt = Szlal + Stta?. (2)

Let us assume that Ia, ] = Ia, I and a,/a~ = ej@.
The reflection coefficient at the reference
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Fig. 1. Nonreclprocai two-port with its reference
indications.

plane 2, K,, then takes the value, from (2),

~, = ~ = ~,, + ~,,ei@
(3)

a2

By means of a calibrated phase shifter at one
side of the two-port, 0 can be adjusted to take
the values O or m. This yields

(K,), = s,, + S21 ~pippin) (4)

(KJr = S22 – S21. (5)

From (4) and (5) S,, and S,, can be readily
computed, but with the poor accuracy at-
tached to a one point method. Altschuler im-
proved the situation by remarking that, when
0 varies from O to 2 Z, Kz describes a circle
in the complex plane. The center of the circle
corresponds to S!, and the radius to ISU1.
The use of a large number of points now al-
lows averaging of the experimental errors.
With practical structures, however, this
method still is not satisfactory. If Sy~and Sa
differ too much, for example, it is impossible
to locate the center of the circle with accuracy.
Furthermore, high VSWR must be measured,
which is both difficult and inaccurate. If S~~
and S21are both very close to zero, very low
VSWR must be measured, and the precision
drops again because of the mismatch errors.
Accurate phase determination is still difficult
because it depends on a one point measure-
ment. To improve the method, let us consider
the equation

K2=&2+S213 (6)

which can be rewritten as

K2 = S2.2 + S,, 3 ejc=~ .,-.,..,’. (7)
a2

The radius of the circle is now ISZ1] . Ial
/a21. If we succeed in adjusting Ia~/a, I to any
desired value, the original circle of Altschuler
will be compressed or expanded and the
measurements become both easy and accu-
rate. Besides, really accurate measurements
can be performed by utilizing several values
of I al/az 1, i.e., by plotting several circles in

the complex plane. From each circle, a value
IS,, I can be obtained and the various values
can be averaged. This procedure smooths out
the errors of the attenuators. Points with
constant phase o must lie on straight lines
through the common center of the circles.
Phase determination, therefore, becomes ac-
curate too (Fig. 2). The practical set-up is
shown in Fig. 3. The matched pads consist
of an isolator matched with an E-H tuner to
avoid multiple reflections. The measurements
proceed as follows:

1) The structure under test is replaced by
a piece of waveguide with the same
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e= Ct

e=o

Fig. 2. Typical plot of (7).

physical length d. Al and A, are set for
zero attenuation and the flap attenuator
is adjusted until a short-circuit pattern
is seen in the slotted waveguide. This
means that Ial I = ] aj /. The location of
the minima is noted. By adjusting Al or
Aa, any value of I a,/a, I may now be
established.

2) The unknown two-port is now inserted
and the standing wave pattern is re-
corded for different values of 6. The
reflection coefficient at the reference
plane 2 is then plotted with the aid of
a polar chart.

Data reduction proceeds in the following
manner: let .90= arg al — arg al be the angle
corresponding to position zero on the dial
of the calibrated phase shifter. Equation (7)
then beeomes

Kz = i3t.L + 821 ~ e~@O*letJ
a2

(8)

where I@\ is the reading on the phase shifter.
Assume that 1 is the abscissa of the first mini-
mum of the short-circuit pattern recorded
under (1) (Fig. 1). At this minimum

(arg b,)2 – (arg a2)~ = m (9)

or,

(arg b.JO – @ – (arg a,), – @ = m (lo)

where o is the propagation constant in the
waveguide. Omitting the subscript O for
reference plane 2, and because

arg b%= arg al — @d (11)

we find

f3, = arg al – arg az = m + 2pt + pd. (12)

It maybe easily checked that a positive phase
shift of a, moves the minimum in the sense
of increasing I, The phase angle of SX1 is
found at the point along the circle where
10] = To,. The appropriate sign is readily
deduced from the above mentioned property.
Typical results are shown for a Philips
PP4422X isolator (frequency range 8.5-9.6
GHz), measured at 10 GHz (Fig. 4). Here
the 1–2 direction corresponds to the for-
ward direction of the isolator. In this case,
the initial circle has been compressed by ap-
propriate settings of attenuator A,, thus rE-
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Fig. 3. Experimental setup.
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Fig. 4. Plot of the measured reflection coefficients in the complex plane.

ducing the value of Ial/az 1. Four values of
IS21I have been found:

Attenuator setting (dB) I s,, I

o 0.884

2 0.870

4 0.886

9 0.896.

Averaging yields: ISZII =0.884. From the ex-
perimental data listed in the figure it is also
possible to deduce the value of arg S.Z,which
is —52°.

Only the straight line with IoI =0 is
important, because-it fixes the origin’ for the
phase determination. The slight deformation
of the star with center SZZis due to the inac-
curacy of the phase shifter. It is meaningless,
however, because in the complex plane we
deal with real phase difference angles and not
with their indications on the phase shifter.

Careful expansion of the center of the
chart allows accurate determination of S3t.
Parameters S,, and SU are found by turning
the structure end for end, and applying the
same procedure as above. If the test structure
happens to have a small S,,, e.g., of the order
of SU (as would be the case with isolators),
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the original circle must be expanded by reduc-
ing Ia! 1. In case of a very high insertion loss,
some difficulties in recording the standing
wave pattern may be encountered because the
power level in the slotted waveguide drops
when one tries to expand the circle too much.
However, it is still possible to measure an
insertion loss of some 40 dB, and this with
a better accuracy than with the former meth-
ods.

A theoretical study of the experimental
error has been performed, but is too elaborate
to be given in any detail. The theory shows
that accuracies of one percent on the magni-
tude and 2° on the phase angle are easily
achieved with run of the mill microwave
equipment.

G. R. HOFFMAN

A. A. WILLEM

Laboratorium voor Electromagnetism

en Acusdca

University of Ghent

Belgium
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Comments on “A Technique for Mea-

suring Individual Modes Propagating

in Overmoded Waveguide”

In a recent paper, Levinson and Rubin-
steinl presented a technique for measuring
individual modes propagating in overmoded
waveguide. Although the measurement tech-
nique described therein is practical and effec-
tive, one of the conclusions drawn from the
results appears to be misleading. The mea-
surement consists of sampling the voltage
amplitude and relative phase of a propagat-
ing multimode 7 GHz signal by means of a
series of probes located about the walls of a
section of WR 650 waveguide. From this
voltage data and the appropriate calcula-
tions, the relative power propagating in each
mode through the WR 650 waveguide is
determined. One advantage of measuring in
oversized waveguide is that the modes of
interest are far from cutoff for the tests per-
formed at 7 GHz. According to Taub2 a
maximum error of only six percent can occur
in the calculations of relative power if, for
simplicity, free-space impedance is assumed
instead of the individual wave impedance for
each mode. As the paper correctly indicates,
the relative power ratios determined for the
modes propagating in the oversized (WR 650)
waveguide are the same as the relative power
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ratios of the modes propagating in the stan-
dard (WR 284) waveguide, assuming very
little mode conversion caused by the connect-
ing tapered section.

The misleading conclusion implied in the
paper (Fig. 10andassociated text), however,
is that the relative amplitude ratios for the
modes propagating in the oversized wave-
guide are the same as the amplitude ratios
for the respective modes propagating in the
standard waveguide. This conclusion is not
correct because the ratio of the mode wave
impedances are different in the two different
waveguide sizes. Hence, astwo modes having
a constant power ratio propagate from a
waveguide cross section in which one mode
is near cutoff to a larger waveguide cross
section in which both modes are far from
cutoff, the mode amplitude ratio decreases,
assuming no mode conversion, according to
the square root of the appropriate wave im-
pedances. Applying this correction will result
in good agreement between the reported
tests and the results of the theoretical analysis
by Felson.’

Finally, the paper does not indicate
whether therelative phase data in Figs. 6, 7,
8, and 10 is referenced atthe test probes or
at the particular mode-exciting device. Be-
cause of the dispersive nature of the taper
and the standard size waveguide, the rela-
tive mode phases at these locations are sig-
nificantly different.

R. E. PtJTTRE

Wheeler Labs., Inc.

Great Neck, N. Y.

Author’s Reply4

We would like to thank Puttre for his
comments on our paper on mode measure-
ments and offer the following clarifications.
Puttre points out that it is implied that the
relative mode amplitude ratios measured in
the oversize guide are the same in the standard
waveguide. Also, he has raised the question
as to the plane at which the reported relative
phase information was referenced, and noted
that any translation of this data to the mode-
excited’ device must account for the disper-
sive properties of the taper and standard
waveguide. Concerning this last question, all
phase data given are referenced at the plane
of the measurement probes. Also, since at
the time this work was performed our prime
interest was in specifying the over-moded
aperture illumination at the plane of the
large end of the taper, any translation of the
measured relative phase was carried back
only to that plane. Even here, although the
corrections were small, we did account for
the relative phase dispersion between modes
@ obtain the best accuracy.

With reference to the translation of the
relative mode amplitudes from the oversize
to standard waveguide, here again we were
concerned only with specifying their measure
at the radiating aperture, However, sufficient
information is available from the measure-
ments whereby the mode amplitude ratios
measured in one size guide can be readily
translated to the ratio in any other size guide.

8 L. B. Felson and N. Marcuvitz, “Modal analysis
and synthesis of electromagnetic fields,” Microwave
Research Inst., Polytechmc Inst. of Brooklyn, N. Y.,
Rept. R-446-55 (a) and (b), February 1956.
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We feel that Puttre’s point is well taken, and,
for the sake of completeness, it will be shown
here how the translations are accomplished.
It should first be pointed out that the ratio
of the amplitudes of any TE.,n modes does
not change where the waveguides being con-
sidered have the same aspect ratio, i.e.,
al/bl = aJbZ. This is due to the fact that the
manner in which the measurements are per-
formed yields relative amplitudes which are
proportional to the amplitudes of the electric
field components only. In general, however,
the amplitude ratios of modes in different
size waveguides are different, and can be
related through the respective cutoff fre-
quencies for the modes in each size guide, as
is shown below.

Using the notation as in Moreno$ and
considering, for example, the translation of
the ratio of two TEnn modes, we get

ATEmn, BnnX2mnl
—cc

ATEmn, &w2K2mn2
(1)

where the term on the left side is the measured
amplitude ratio, and

“ ‘“2($+;)=(:PC2“)
Letting the bracket subscript denote wave-

guide sizes 1 and 2, the translation ratio is
given by

[An.1/-Ln2]1 _ [.fcm.,/fcmn,l,2
[ftmnl/Amn2]2 – [fdmdcmnd,’ “ ‘3)

As noted before, for waveguides having
the same aspect ratios, the ratio of the cut-
off frequencies remains the same, and thus
the mode amplitude ratios are the same.

In performing the above calculation, the
accuracy is not dependent on how near to
cutoff the respective modes are. For TE~n
modes, this dependency shows up only in the
expressions for the magnetic field components.
The converse is true when considering TM~n
modes, and in the following equations for
translating the electric field amplitude ratios
of TMfin modes, the computations could
blow-up if one of the modes is near cutoff in
one of the zuides.

For TM”.W modes, then, we have in gen-
eral,

~TMmnl Am.lpm.1K2m.2
—x
ATMmn, Am.z.f?..zKzmnl

(4)

where

The translation ratio for the two different
size guides is then,

[AnnJ&o]I [.f.mdhmd,’
[Am.1/Am.2]2 = [fcmn2/fcmn112z

. b“’– f2mtnl/f’ – .Pcmn’2]1 1r2

\ 1[f’ – fzmwdf’ – f’cm?ij, “ ‘6)
For a combination of TE.~ and TM..

modes, the translation ratio is,

6 T. Moreno, Micro ware Transmission Design
Data. New York: Dover, 195S, p. 115.


